Extensions 1→N→G→Q→1 with N=C22 and Q=C22⋊A4

Direct product G=N×Q with N=C22 and Q=C22⋊A4
dρLabelID
C22×C22⋊A412C2^2xC2^2:A4192,1540

Semidirect products G=N:Q with N=C22 and Q=C22⋊A4
extensionφ:Q→Aut NdρLabelID
C22⋊(C22⋊A4) = C26⋊C3φ: C22⋊A4/C24C3 ⊆ Aut C2224C2^2:(C2^2:A4)192,1541

Non-split extensions G=N.Q with N=C22 and Q=C22⋊A4
extensionφ:Q→Aut NdρLabelID
C22.1(C22⋊A4) = C422A4φ: C22⋊A4/C24C3 ⊆ Aut C2224C2^2.1(C2^2:A4)192,1020
C22.2(C22⋊A4) = C42⋊A4φ: C22⋊A4/C24C3 ⊆ Aut C221612+C2^2.2(C2^2:A4)192,1023
C22.3(C22⋊A4) = C42.A4φ: C22⋊A4/C24C3 ⊆ Aut C224812-C2^2.3(C2^2:A4)192,1025
C22.4(C22⋊A4) = C2×Q8⋊A4central extension (φ=1)48C2^2.4(C2^2:A4)192,1506
C22.5(C22⋊A4) = C2×C23⋊A4central extension (φ=1)16C2^2.5(C2^2:A4)192,1508
C22.6(C22⋊A4) = C24.7A4central stem extension (φ=1)16C2^2.6(C2^2:A4)192,1021
C22.7(C22⋊A4) = Q8⋊SL2(𝔽3)central stem extension (φ=1)64C2^2.7(C2^2:A4)192,1022
C22.8(C22⋊A4) = C245A4central stem extension (φ=1)16C2^2.8(C2^2:A4)192,1024

׿
×
𝔽